Mapping of Tropical Cyclone Precipitation Before and After Landfall

Research Partners

- Robbie Hood, NASA MSFC
- Frank LaFontaine, Raytheon
- Anthony Guillory, NASA MSFC
- Daniel Cecil, University of Alabama in Huntsville
- Frank Marks, NOAA Hurricane Research Division

Instrumentation

- <u>A</u>dvanced <u>M</u>icrowave
 <u>P</u>recipitation <u>R</u>adiometer
 (AMPR)
 - Flown on ER-2 during CAMEX-3 and CAMEX-4
 - 10.7, 19.35, 37.1, 85.5 GHZ frequencies
 - Cross-track scanner
 - Rotating polarization (H on left, equal at nadir, V on right)
 - In-flight calibration
 - Designed to study precipitation structures and support TRMM validation

- <u>C</u>onically-<u>S</u>canning <u>T</u>wo look <u>A</u>irborne <u>R</u>adiometer (C-STAR)
 - Flown on DC-8 during CAMEX-4
 - 37.1 GHz frequency
 - Conical scanner
 - 53° incidence angle
 - Four polarizations (H, V, V+45°, V-45°)
 - Two look (fore and aft)
 - In-flight calibration
 - Designed to test feasibility of passive ocean wind retrievals

Data Status

- C-STAR performed well during all missions
- AMPR experienced electrical interference problems on ER-2 causing instrument malfunction on early few CAMEX missions. Instrument performance greatly improved after 9 September, but 85 GHz Tb's appear to be lower than expected
- Data have been quality-controlled to eliminate erroneous navigation, calibration, and data values
- Calibration checks have been performed using dropsonde profiles with radiative transfer models
- Have delivered browse images and data for both AMPR and C-STAR to the CAMEX Data Archive

AMPR BROWSE SWATH TB DATA FROM CAMEX-4

NASA ER-2 809 Flight 137 on 10 Sep 2001

McIDAS based

Collaborations

- Study relationship of active and passive microwave signatures with lightning as an indicators of storm intensity changes
 - Current partners: Hood, LaFontaine, Cecil, Guillory, Marks, Gerry Heymsfield, Ed Zipser, and Rich Blakeslee
- Studying potential of high spatial resolution passive microwave instrumentation to monitor inland flooding
 - Current partners: Hood, LaFontaine, Cecil, Guillory, and Marks
- Investigate feasibility passive microwave ocean wind retrievals
 - Planned partners: Hood, LaFontaine, Cecil, Guillory, and Linwood Jones